

		St	uden	t Nu	mber

Hunters Hill High School Year 12 Mathematics Advanced Trial Examination, 2020

General	 Reading time – 10 minutes 						
Instructions	• Working time – 3 hours						
	 Write using black pen 						
	 Calculators approved by NESA may be used 						
	 A reference sheet is provided at the back of this paper 						
	 For questions in Section II, show relevant mathematical reasoning and / or calculations 						
Total Marks:	_ Section I – 10 marks (pages 2–5)						
Total Marks: 100	 Section I – 10 marks (pages 2–5) Attempt Questions 1–10 						
	• Attempt Questions 1–10						
	 Attempt Questions 1–10 Allow about 15 minutes for this section 						

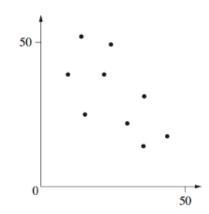
Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

1 If $f(x) = 5x^3 + 3$, what is the value of f'(-1)?

- A. -2
- B. 18
- C. 15
- D. -12
- 2 The graph shows a scatter plot for a set of data.



Which of the following values is the most appropriate Pearson's correlation coefficient of this set of data?

- A. -1
- B. 0.35
- С. –0.35
- D. -0.63

3 What is the amplitude, period and phase of $f(x) = -2\cos(5x - \pi)$?

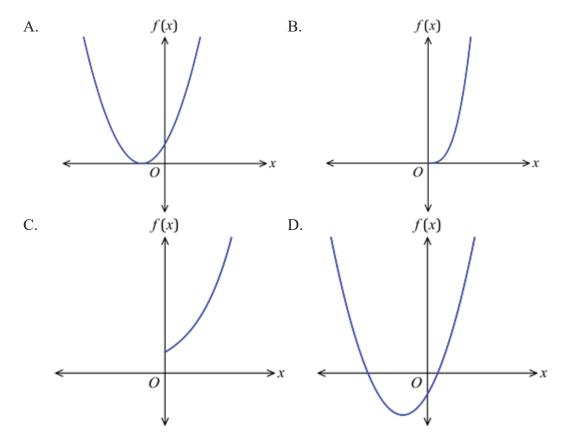
- A. Amplitude is -2, period is $\frac{2\pi}{5}$, and phase shift is $\frac{\pi}{5}$ to the left
- B. Amplitude is 2, period is 5, and phase shift is π to the left
- C. Amplitude is 2, period is $\frac{2\pi}{5}$, and phase shift is $\frac{\pi}{5}$ to the right
- D. Amplitude is 2, period is 5, and phase shift is $\frac{\pi}{5}$ to the right

- 4 A and B are events from a sample space such that P(A) = p, where p > 0, P(B|A) = m and P(B|A') = n. A and B are independent events when
 - A. m = nB. m = 1 - pC. m + n = 1D. m = p
- 5 Given $f(x) = \ln(2x 1)$ and g(x) = x + 2, the domain of f(g(x)) is

A.
$$x \in \left[-\frac{3}{2}, \infty\right)$$

B. $x \in \left[\frac{1}{2}, \infty\right)$
C. $x \in \left(-\frac{3}{2}, \infty\right)$
D. $x \in (-2, 0)$

6 Which of the following graphs could NOT represent a probability density function (x)?



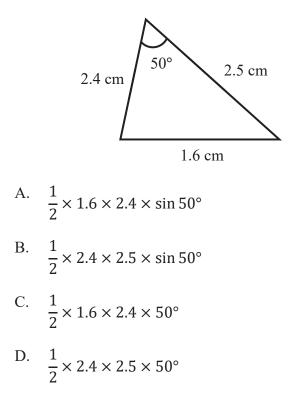
- 7 The length of a type of ant is approximately normally distributed with a mean of 5.1 mm and a standard deviation of 1.2 mm. A standardised ant length of z = -0.5 corresponds to an actual ant length of
 - A. 13 mm
 - B. 1 mm
 - C. 4.5 mm
 - D. 2.55 mm
- 8 A particle is moving along the x-axis. The displacement of the particle at time t seconds is x metres. At a certain time $\frac{d^2x}{dt^2} = -2 \text{ ms}^{-2}$ and $\frac{dx}{dt} = 1 \text{ ms}^{-1}$.

Which statement describes the motion of the particle at that time?

- A. The particle is moving to the right with increasing speed.
- B. The particle is moving to the left with increasing speed.
- C. The particle is moving to the right with decreasing speed.
- D. The particle is moving to the left with decreasing speed.

- 9 A trigonometric function f(x) satisfies the condition $\int_{0}^{\frac{\pi}{2}} f(x)dx \neq \int_{\frac{\pi}{2}}^{\pi} f(x)dx$ Which function could be f(x)?
 - A. $f(x) = \sin x$
 - B. $f(x) = \cos(2x)$
 - C. $f(x) = \sin(2x)$
 - D. $f(x) = \cos(4x)$

10 Which of the following would give the correct value for the area of the triangle?



Evaluate
$$\sum_{n=1}^{\infty} 2\left(\frac{1}{5}\right)^n$$

Question 12 (3 marks)

Find the equation of the normal to the curve $f(x) = \ln(x - 1) + 2$ at the point (2,0).

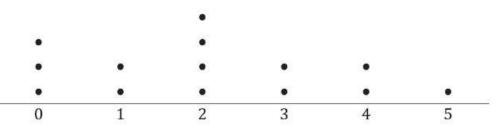
.....

Question 13 (2 marks)

Describe the transformations applied to $y = x^2$ in order to give the transformed 2 function of $y = (4x + 2)^2$.

Question 14 (3 marks)

A sample of 14 people were asked to indicate the time (in hours) they had spent watching television on the previous night. The results are displayed in the dot plot below:



Find the mean and sample standard deviation of these times. Give your answers correct to one decimal place.

Question 15 (2 marks)

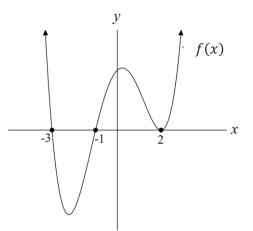
Differentiate $e^{x^2 \cos x}$

2

3

Question 16 (2 marks)

The diagram shows the graph of f(x).



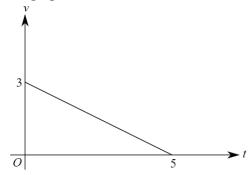
Sketch f'(x) below, showing all critical features.

Question 17 (2 marks)

If $\cos \alpha = -\frac{4}{5}$ and $\sin \alpha < 0$, find the exact value of $\tan \alpha$.

Question 18 (5 marks)

The velocity of a particle moving along the x-axis at v metres per second at t seconds, is shown in the graph below:



Initially, the displacement x is equal to 13 metres.

(a) Write an equation that describes the displacement, x, at time t seconds.

3

(b) Draw a graph that shows the displacement of the particle, x metres from the origin, at a time t seconds between t = 0 and t = 6. Label the coordinates of the endpoints of your graph.

Ou	estion 19 (3 marks)
	ag contains 9 blue lollies and 7 green lollies.
Geo	brgia takes out a lolly from the bag without looking and eats it. She then es out another lolly without looking and eats it.
(a)	What is the probability of Georgia choosing a blue lolly in her first selection?
(b)	By drawing a tree diagram, or otherwise, find the probability that Georgia eats two lollies of different colours.
Qu	estion 20 (2 marks)
f y	$y = xe^{2x}$, prove that $\frac{dy}{dx} - 2y = e^{2x}$

.....

.....

Question 21 (5 marks)

A continuous random variable X has a function f given by $f(x) = \begin{cases} 2x^3 - x + a, \\ 0 \end{cases}$ $0 \le x \le 1$ otherwise (a) Find the value of a which makes f(x) a valid probability density function _____ _____ (b) Find the expected value and variance of *X*. _____ _____ ------..... _____ _____ _____ _____ _____

2

Question 22 (4 marks)

In an arithmetic sequence, the fifth term is 25 and the eighteenth term 181. What 4 is the smallest value of n such that the sum of the first n term in the sequence is at least 27365?

Question 23 (3 marks)

Let $f(x) = \sqrt{x+1}$ for $x \ge 0$

(a) State the domain of f(x)

1

Question 23 continues on page 14

value of <i>c</i>					
uestion 24 (10 marks)				
onsider the o	surve $y = \sin x$	$r + \cos r$ in 1	he domain _	$\pi < \gamma < \pi$	
	ercepts, expre				
) Find <i>x</i> -int		ss your answ		π.	
) Find <i>x</i> -int	ercepts, expre	ss your answ		π.	
) Find <i>x</i> -int	ercepts, expre	ss your answ		π.	
) Find <i>x</i> -int	ercepts, expre	ss your answ		π.	
) Find <i>x</i> -int	ercepts, expre	ss your answ	er in terms of	π.	
) Find <i>x</i> -int	ercepts, expre	ss your answ	er in terms of	π.	
) Find <i>x</i> -int	ercepts, expre	ss your answ	er in terms of	π.	
) Find <i>x</i> -int	ercepts, expre	ss your answ	er in terms of	π.	
) Find <i>x</i> -int	ercepts, expre	ss your answ	er in terms of	π.	
) Find <i>x</i> -int	ercepts, expre	ss your answ	er in terms of	π.	

Question 24 continues on page 15

Find any points of inflection.
Explain why the points found in (c) are not points of horizontal inflection.
Hence, sketch the graph of $y = \sin x + \cos x$, for $-\pi \le x \le \pi$, showing all
Hence, sketch the graph of $y = \sin x + \cos x$, for $-\pi \le x \le \pi$, showing all
Hence, sketch the graph of $y = \sin x + \cos x$, for $-\pi \le x \le \pi$, showing all
Hence, sketch the graph of $y = \sin x + \cos x$, for $-\pi \le x \le \pi$, showing all
Hence, sketch the graph of $y = \sin x + \cos x$, for $-\pi \le x \le \pi$, showing all
Hence, sketch the graph of $y = \sin x + \cos x$, for $-\pi \le x \le \pi$, showing all
Hence, sketch the graph of $y = \sin x + \cos x$, for $-\pi \le x \le \pi$, showing all

Question 25 (2 marks)

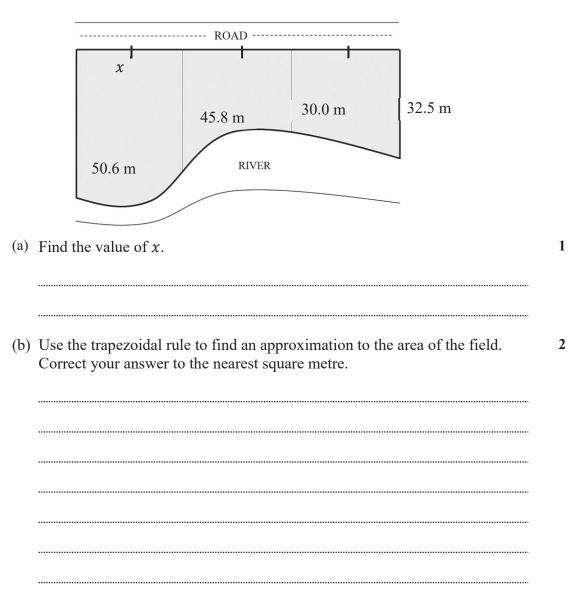
Prove that
$$\frac{1}{1 + \sin \theta} + \frac{1}{1 - \sin \theta} = 2 \sec^2 \theta$$

2

.....

Question 26 (3 marks)

A field (shaded) is bordered on one side by a 120 metre of road and on the other side by a river. Measurements are taken from the road to the river, as shown.

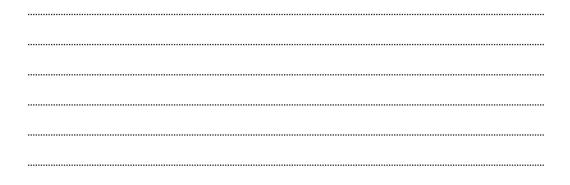


Question 27 (3 marks)

The table below shos Bob's scores in PDHPE and Biology examinations, as well 3 as the mean and the standard deviation for each subject.

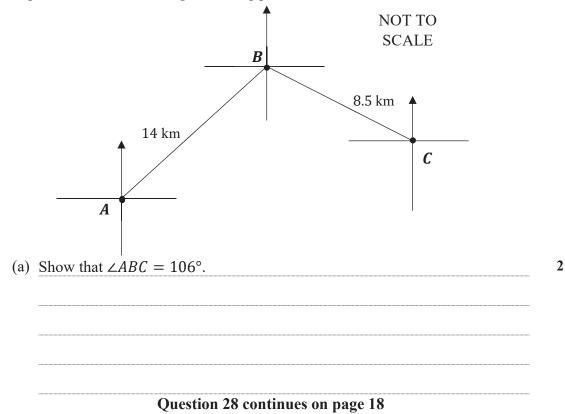
	PDHPE	Biology
μ	65	80
σ	4	3
Score	74	84

Explain which is his strongest subject, show mathematical working.



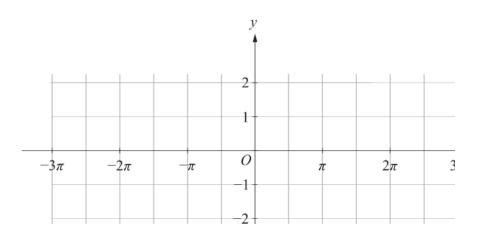
Question 28 (5 marks)

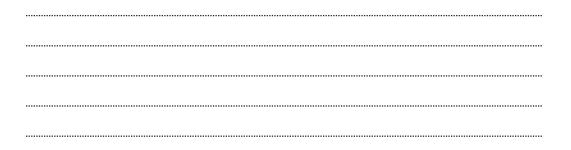
A class is on a hike as part of their sports course. They are given the following directions from starting point A: They are to walk on a bearing of 062° for 14 kilometres to point B. Then, they continue on a bearing of 136° for 8.5 kilometres to point C, before returning to starting point A.



Question 29 (3 marks)

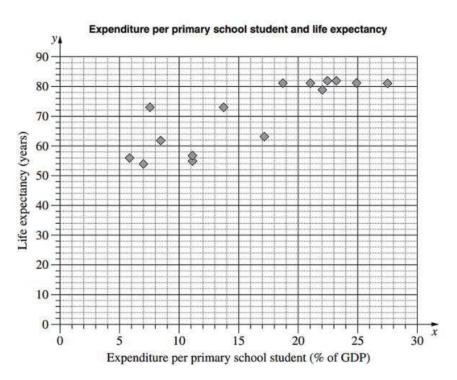
By drawing graphs on the number plane, show how many solution exist for the equation $\cos x = \left|\frac{x-\pi}{4}\right|$ in the domain $(-\infty, \infty)$.





Question 30 (6 marks)

The scatterplot shows the relationship between expenditure per primary school student, as a percentage of a country's Gross Domestic Product (GDP), and the life expectancy in years for 15 countries.



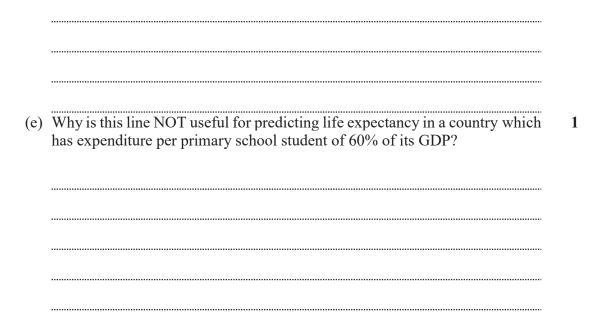
- (a) For the data representing expenditure per primary school student, the lower 1 quartile, Q_L is 8.4 and upper quartile, Q_U is 22.5. What is the interquartile range?
- (b) Another country has an expenditure per primary school student of 47.6% of its GDP. Would this country be an outlier for this set of data? Justify your answer with calculations.

(c) On the scatterplot, draw the least-squares line of best fit, y = 1.29x + 49.9

2

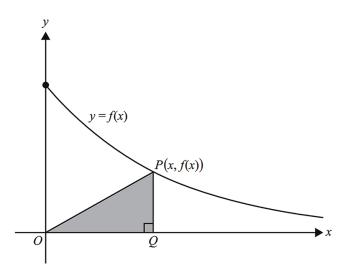
Question 30 continues on page 20

(d) Using this line, or otherwise, estimate the life expectancy in a country which 1 has an expenditure per primary school student of 18% of its GDP.



Question 31 (8 marks)

Let $f(x) = 2e^{-\frac{x}{5}}$ for $x \ge 0$. A right-angled triangle *OQP* has vertex *O* at the origin, vertex *Q* on the *x*-axis and vertex *P* on the graph of f(x), as shown. The coordinates of *P* are (x, f(x)).

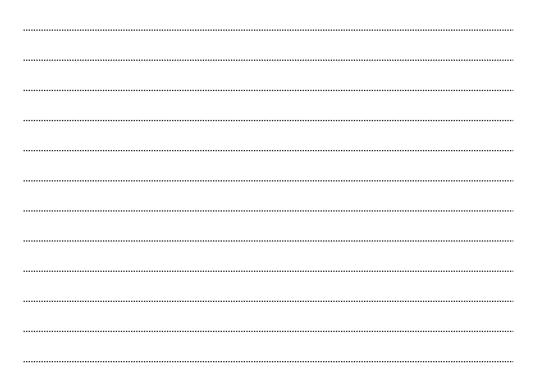


(a) Find the area, A, of the triangle OPQ in terms of x.

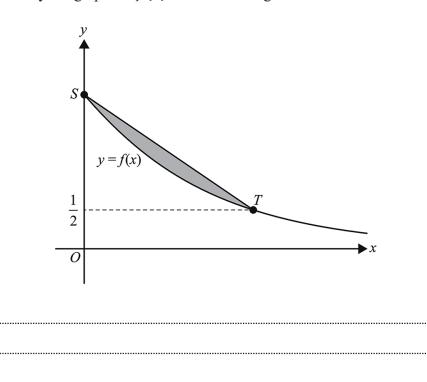
1

Question 31 continues on page 21

(b) Find the maximum area of triangle OQP and the value of x for which the maximum occurs. 3



(c) Let S be the point on the graph of f(x) on the y-axis and let T be the point 5 on the graph of f(x) with the y-coordinate $\frac{1}{2}$. Find the area of the region bounded by the graph of f(x) and the line segment ST.



.....

Question 32 (5 marks)

The population of a white-ant colony can be modelled using the equation $P = Ae^{kt}$, where A and k are positive constants and t is time in weeks. Initially, the population is 1000. Two weeks later, the population has increased to become 1500.

(a) Find the value of A and k. Express your answer in exact form.

..... (b) Find the population after four week, correct to the nearest possible number of 1 white-ants. Question 32 continues on page 23

(c) White-ants can cause significant structural timber damages. Assume this particular ant colony was found near a timbre structured home, using the model above to explain why the situation is getting worse. Show all mathematical calculations.

Question 33 (6 marks)

The weight, in grams, of beans in a tin is normally distributed with mean μ and standard deviation 7.8. It is known that 10.03% of tins contain less than 200 g.

Table 1: Probability table for calculating the standard normal distribution. The values represent the area to the left of (or less than) the z-score.

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952

Question 33 continues on page 23

(a) Use the Probability Table above to find the value of mean value, μ . Correct 2 your answer to 2 decimal places.

_____ (b) The machine settings are adjusted so that the weight, in grams, of beans in a 2 tin is normally distributed with mean 205 and standard deviation σ . Given that 98% of tins contain between 200 g and 210 g, draw a (i) normal distribution graph to illustrate this information. (ii) Use the Probability Table above to find the value of the standard 2 deviation, σ that can be achieved with the new setting. Correct your answer to 2 decimal places.

End of paper

Section 1 $Q1. f^{2}(-1) = 15x^{2}$ = 15Q2. D - 0.63 Q3. A=2 f(x)=-2coss(x-=) $p = 2\pi$ shift = 3 to the right Q4. P(B|A) = P(B) = P(B|A')LM=R (A) QS. A. (2x-1) 8(x)=x+2 f(g(x)) = (2(x+2)) -1) = (n 2x+3) 2X+3>0 $2\chi > -3$ $\chi > -3$ Q6. (D) no ve polf.

Q7. Z=x-z $-0.5 = \frac{\chi - 5.}{1.2}$ $Q8 \quad \frac{d^2x}{dt^2} = -2 \quad , \quad \frac{dx}{dt} = 1$ Ċ Q9, Sizz Sint -71 -71 ZA 21 ¥2 N2 Cas 2x 21-27. $Q10. A = \pm absin Q$ (B)= 1x2.4x2.5 XSIN50°

Section I $\begin{array}{cccc} & QB, & y = \chi^2 & OR & y = (2(2\chi+1))^2 \\ & y = (4\chi+2)^2 & y = 4(2\chi+1)^2 \\ & y = (4\chi+2)^2 & y = 4(2\chi+1)^2 \end{array}$ Q_{11} , $\frac{2}{2(z)^{n}}$ $\begin{array}{c} y = (\frac{x+z}{4})^2 & \frac{y}{4} = (\frac{x+z}{2})^2 \\ dilate horizontally by a factor of \\ \frac{1}{4}, translate to the left by 1, \\ 0R \quad y = (\frac{x+2}{4})^2 \\ dilate horizontally by a factor of \\ \frac{1}{4}, translate to the left by 1, \\ 0R \quad y = (\frac{x+2}{4})^2 \\ dilate horizontally by a factor of \\ \frac{1}{4}, total point 14. \\ b \neq 4. \end{array}$ $= 2x \left(\frac{1}{5} + \frac{1^{2}}{5} + \frac{1^{3}}{5} + \frac{1}{5} + \frac{1}{5}$ = 2× Son where r= 1= $= 2 \times \frac{a}{1-r} \qquad a = \frac{1}{5}$ $= 2 \times \frac{5}{1-5} \qquad \frac{1}{5} \times \frac{5}{4}$ =士 0 Q_2 fix) = $log_3(x-1)+2$ at (2,0) $f'(x) = \underbrace{]}_{x-1}$ at X=2 $\bar{\chi} = F(\chi) = \mathcal{Z} \times p$ p(20======m D $= 0X^{3} + 1X^{2} + 2X^{4} + 3X^{2}$ M2 = = - 1 0 +4X=+5X+ 3 y-0= -1(x-2) = 2 3 ~ 2.1 y = -x + 2 $\begin{aligned} \mathcal{B} = \sqrt{Var(X)} = \sqrt{E(X^2)} - M^2 = \int [0 + \frac{2}{74} + 4X_{14}^{4} + 9X_{14}^{2} + 9X_{14}^{2} + 16X_{14}^{2} + 2X_{14}^{2} + 2X_{14}^{2}$

QIS let y = c and first = x2 cosx $f'(x) = 2x \cos x - x^2 \sin x$

Q16. A fiz A R'as shape D

Q17 $\cos q = \frac{-4}{5}$ sind() JS A the agle d is the JT C 3rd quadrant. $\frac{1}{-3} \frac{-4}{-4} + \frac{-3}{-4}$ 2 $tand = \frac{3}{4}$ Q18. at t=0, 19=3, x=13 t=5, 12=0 a) $V - 0 = -\frac{3}{2}(t - 5)$ 12=-3t+3 () $2 = \int (-\frac{3}{5}t+3) dt = -\frac{3}{5}t^2 + 3t + C O$ at t=0, X=13 : Z=B= 0+0+C ⇒ C=B () [3] : X=-3 t2+3t+13 D

b) 20.5 $\frac{-b}{2a} = \frac{-3}{-6} = 5$ a) -Ograph 13 pts Inbelled 0 at t=b, x=20.2, [2] need to chech for reak, if not shown I mark Q 19. B:9 G:7 a) total =16 $P(B) = \frac{9}{11}$ b) $P(Bh \circ GB) = \frac{9}{16} \times \frac{7}{15} + \frac{7}{16} \times \frac{9}{15}$ =2) 40 I3 $\widehat{\mathcal{D}}$ Q20. $y = \chi e^{2\chi} \frac{ghor}{dy} - 2g = e^{2\chi}$ $\frac{dy}{dx} = e^{2x} + 2xe^{2x}$ $\frac{dy}{dx} = e^{2x} + 2xe^{2x} = 2xe^{2x}$ $= e^{2x} = RHs$ 2

Q21 $F(x) = \int_{n}^{1} 2x^{3} - x + \alpha = 1 \quad \text{if } p df.$ Since Fox) = 0 for all other & relues $\int \frac{\chi^4}{2} = \int \chi^2 + d\chi \int \frac{1}{2} = 1$ $\frac{1}{2} - \frac{1}{2} + a = 1$ 2 A = 1 Db) $E(X) = \mu = \int \alpha f(x) d\alpha$ $=\int (\alpha(2x^3-x+1))dx$ = $\int_{\partial}^{1} 2x^4 - x^2 + x dx$ (D) $= \left[\frac{2}{5}\chi^{5} - \frac{1}{5}\chi^{3} + \frac{1}{2}\chi^{2}\right]^{1}$ = 17 $Var(X) = 6^2 = \int_{D}^{1} \chi^2 f(x) dx - \mu^2$ $= \int_{0}^{1} (2\pi^{5} - \pi^{3} + \pi^{2}) d\pi - (\frac{4\pi}{2\pi})^{2}$ $= \int \frac{1}{3}\chi' - \frac{1}{4}\chi'' + \frac{1}{3}\chi'' - \frac{1}{(3)} \int_{0}^{1} - \frac{1}{(3)}\chi'' - \frac{1}{3}\chi'' + \frac{1}{3}\chi'' - \frac{1}{(3)}\chi'' + \frac{1}{3}\chi'' + \frac{1}{3}\chi'' - \frac{1}{(3)}\chi'' + \frac{1}{3}\chi'' + \frac{1}{3}\chi'' - \frac{1}{(3)}\chi'' + \frac{1}{3}\chi'' + \frac{1}{3}\chi''' + \frac{1}{3}\chi'' + \frac{1}{3}\chi'' + \frac{1}{3}\chi$ = 47 0

Q23 Q22. T5=25, T18=181 a) fix) = JX+1 for X20 So > 27365 AP X+1>0 Tr= at(1-1)d $\chi \ge -1$ but 25 = a + (5 - 1)aX to also 20 25=a+4d - D · 2≥0, x € (0,00) () some logic (1)181 = A + (18 - 1) db) $g(x) = \chi^2 + 4\chi + 3 \quad \chi \leq C \& C \leq 0$ 181=a+17d -2 g(x) E domain of fex) egn @ -0 g(x) = (x+3)(x+1) from (A) 156=13d fix has a domain d =12 of X 6(0,00) Sub d into M J XE[-1,00) 25= a+4×12 1 used, need to show this also means $0 \leq g(x) < \infty$ for part 2. a=-23 $S_n = A(2a + (n - 1)d)$ in ZZ-1 or ZZ-3 () to get a mark. Sn = 1 (121 - 58) but also XED $\therefore x \leq C$ and C = -3 D3 = 612-2 1 > 27865 A 612-2n-27365>0 D $n = 29 \pm \sqrt{29^2 - 4 \times 6 \times (-27345)}$ 2×6 N>69-99: N=70. 0

Q24. y=SinxtCosx -R < x < R C) point of inflection 4"=0 = - Sin 2 - COS2L a) a-intercepts; y=0=SINX+COSX SINX = - Cast - SINTL = COSTL tanx =-1 -tANZ = 1 $\begin{array}{c} \chi = - \Pi & \text{or} & \underline{37} \\ 4 & \Pi & 4 \end{array}$ 2 $\frac{\tan x = -1}{x = -\frac{1}{4}} \text{ and } x = \frac{37}{4}$ Test concavity $-\frac{\pi}{4}$ $\frac{\pi}{4}$ $\frac{3\pi}{4}$ 2π (I) 4 π b) stationery points v" 0 $-\sqrt{2}$ 0 \therefore as concavity changes, the points $\left(-\frac{\pi}{4}, 0\right)$ and $\left(\frac{3\pi}{4}, 0\right)$ are points of inflection y'=0= 005x-sinx pool sharm. Key points $\frac{tax}{x} = 1$ $\chi = \frac{1}{4} \quad \text{or} \quad -\frac{30}{4}$ d) $g'' = -sin \chi - cos \chi$ When x=1, y"=-1-1<0 max $\chi_{=} = \frac{1}{4}, \quad H'' = \frac{1}{12} + \frac{1}{12} > 0 \quad Min.$ TI - E- 2 たっ at x= 丧, y= き+ 定= 52 end 3 To be mark all pts required $\chi = -\frac{37}{5}, g = -\sqrt{2}$ -: (7,52) is a local maximum turnizent (-37, -J2) is a load minimum turing pt.

R25 LHS : HSIND 1-SIND = (1-6m0) + (1+ sm0) 1- Sin20 $= \frac{2}{\cos^2 \theta}$ $= 2 sec^2 P$ Q26. a) $\chi = 120 = 3 = 40 m$ (1) $\int_{a}^{b} f(x) dx = \frac{b-a}{2n} \left(f(a) + f(b)^{+} \right)$ $\frac{2}{2n} \left(f(x) + f(x_{n-1}) \right)$ $\frac{8x}{2}$ 6) a=0, b=120, fco)=50%, f(120) = 32.5 f(51.) = f(40) = 45.8 f(21.) = f(80) = 30.0

~ 40 [(50.6+32.5+2(45.8+30)]

 $\simeq 4694 m^2$

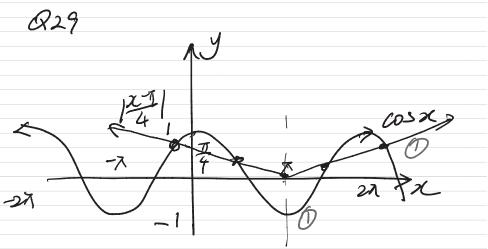
Q27. need to attandardise results for comparison $PDHPE: Z_P = \frac{74-65}{4} = 2.25D$ Biology: ZB = 84-80 = 1.33 D

greater the 2 score, the better his mark is. Therefore, he scored more strongly in PDHPE.

Q28 1360 14 |62° 8.5 Ď a) LABD=62° calternate angles CDB = 180-136° = 44° -: LABC = 62+44 =106° (D) b) use cosine rule AC2 = 142 + 8.5 - 2×14×8.5 cos/06 AC = 18.27ACC18Km. C) $\frac{Sin \angle BCA}{14} = \frac{Sin lob}{18}$ LBCA = 47.437° or 132 $136 - 90 = 46^{\circ}$

bearing = 270 - (47.437-44°)

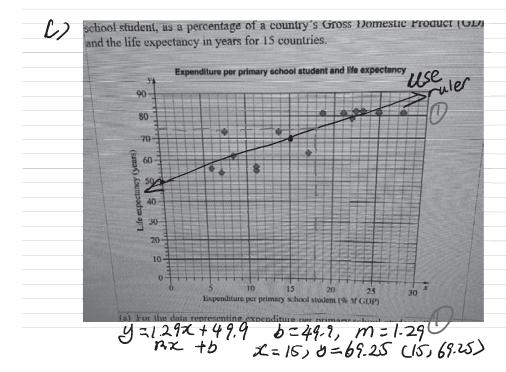
= 268°33' N 269° T.



Cos X : A=1, P=27, C=0 12-71: 14-41 m=1 y-intercept 2/=3 4 Solution. D

Q30 IQR = Qu - QL a = 225-8.4 = 14.1

b) Qu + 1.5X LQR = 225+1.5×14. = 43.65% Since 47-690>43.65% $-\mathcal{D}$ · it is an outlier



d) from the diagram, at x=18% 9=74 (answ 72-74 all acceptable) -- the life expectancy is 74.

e) At 60% (DP, the love predicts a life espectancy over 100 which exceeds the espected life span for most human. So this tire of best fit is only D predictive in a lower range of GDP expenditure.

QB

a) $A = \pm x b x h$ $b = \chi$, $h = f(x) = 2e^{-\chi}$ A= + XXX203 = xe3

b) max-area. $\frac{dA}{dx} = 0$ & $\frac{dA}{dx^2} < 0$ X(-403)+03=0 P=== (1-3=)=0 D $\therefore \mathcal{X} = 5 \quad (\mathbb{C}^{\frac{n}{2}} > 0, \mathbb{F}_{2})$ $au \times 3$ $at \times 5, \quad A = \times \mathbb{C}^{\frac{n}{3}} = 5\mathbb{C}^{1} \quad (\mathbb{D})$ d2A = - 12 C - 12 C - 25 C - 2 at x=5 drA 20 D - Arax = 5 wits at x=5 C) Find S = F(0) = 2 S(0,2) Find 7: 20 == == == $e^{-\frac{1}{5}} = \frac{1}{4}$ z = -5ln =

T(5(14, 5) $A = Area \left[- \int_{-\infty}^{5\ln 4} (2e^{-\frac{\pi}{2}}) dx \right]$ $= \frac{1}{2}h(a+b) + 10[e^{-\frac{2}{5}}]^{5h4}$ $= \frac{1}{2} \times 5 \ln 4 (2 + \frac{1}{2}) + 10 e^{-\ln 4} - 1$ $=\frac{25}{4}\left(n4+10(4-1)\right)$ $=\frac{25}{4}\ln 4-\frac{15}{2}$ units² Q32 P=AP.et A) at t=0, P=1000, t=2, P=1500 1000 = Ae" A =1000 (1 1500 = 1000 e2k

k= 41.5 D

b) $P = AC^{4k} t=4$ $P = 1000C^{4(1)5}$ Q33 no mark P= 1000 (e26/15) for inconnect P=2449.49 P=2450 $P = A e^{kt}$ $\frac{dP}{dt} = kAC^{kt} \qquad D = \frac{h^{15}}{2}t$ $= \frac{(h^{15} \times 1000 \times C^{-2})}{2}$ Al Since de >02 de for t>0, . the rate of change of white-arts population is monotonic increasing as time increases, sherefore the population is increasing rapidly and the Rituation is getting worse.

From the table. P(X ≤ 200)~0,1003 => Z=-1.28 $Z = \frac{x - \mu}{6}$ -1.28 = 200 - M7.8 M=209.984 ~210 µ=205,6 Ù) 98% 190 200 205 210 (8) ù) Zu = 210-205 ZL = 200 - 205

 $P(X \leq 2u) = 9990 \Rightarrow Zu = 2.33$ $\frac{210-205}{6}=2.33$ $\mathcal{O} = \frac{S}{2.33}$ 6=2.145 6=2.15 (9)